la fisica en la edad media
Con el paso de los años y a la llegada de la edad media se puede decir que no fue una gran época de hallazgos en ningún campo de occidente, lo trascendente fue que los escritos de Aristóteles fueron traducidos, aproximadamente en 1500, y así se buscaría mejorar el método científico y la búsqueda de nuevas teorías que derrumbarían el sistema aristotélico.
Los experimentos matemáticos en esta época sirvieron bastante en la idea del método deductivo.
Un filosofo que realizo sus estudios en esta época fue bacón, el cual fue un continuador del método inductivo, este reafirmo el valor de la ciencia experimental, y así a lo contrario de Aristóteles cambia la manera de ver a los fenómenos naturales.
Esta época es considerada la etapa oscura de la humanidad, debido a que si alguien se dedicaba a hacer explicar fenómenos en la naturaleza era considerado pagano. Algunos de los científicos que hicieron experimentos a escondidos por el temor de ser castigados fueron: Mendel y Da Vinci.
Gregorio Mendel fue un monje católico el cual describió las llamadas leyes de Mendel, que rigen la herencia genética, inicialmente realizo cruces de semillas, ahí estudiando las características de genes.
Leyes de Mendel:
Primera ley, o Principio de la uniformidad: "Cuando se cruzan dos individuos de raza pura, los híbridos resultantes son todos iguales." individuos homocigotas, uno dominante (AA) y otro recesivo (aa), origina sólo individuos heterocigotas, es decir, los individuos de la primera generación filial son uniformes entre ellos (Aa).
• Segunda ley, o Principio de la segregación: "Ciertos individuos son capaces de transmitir un carácter aunque en ellos no se manifieste". El cruce de dos individuos de la F1 (Aa) dará origen a una segunda generación filial en la cual reaparece el fenotipo "a", a pesar de que todos los individuos de la F1 eran de fenotipo "A". Esto hace presumir a Mendel que el caracter "a" no había desaparecido, sino que sólo había sido "opacado" por el caracter "A", pero que al reproducirse un individuo, cada caracter segrega por separado.
• Tercera ley, o Principio de la transmisión independiente: Esta ley hace referencia al cruce poli híbrido (monohíbrido: cuando se considera un carácter; polihibrido: cuando se consideran dos o más caracteres). Mendel trabajó este cruce en guisantes, en los cuales las características que él observaba (color de la semilla y rugosidad de su superficie) se encontraban en cromosomas separados. De esta manera, observó que los caracteres se transmitían independientemente unos de otros. Esta ley, sin embargo, deja de cumplirse cuando existe vinculación (dos genes están en locus muy cercanos y no se separan en la meiosis)
La Física en el periodo clásico
En el siglo XIX fue donde se producen avances fundamentales en la electricidad y el magnetismo, también se producen descubrimientos de radioactividad y el descubrimiento del electrón.
Durante el siglo XX la física se desarrollo plenamente:
En 1904 se propuso el primer modelo atómico
En 1905 Einstein formulo la teoría de la relatividad especial el cual coincide con las leyes de newton y características de la velocidad.
En 1915 se formula la teoría de la relatividad general la cual sustituye la ley de gravitación de newton.
La Física en el periodo moderno
La definición de física separa a la "moderna" de la "antigua", la primera se refiere particularmente en la interacción entre partículas la cual será observada con la ayuda de un microscopio. A través de este enfoque se han obtenido diferentes avances tecnológicos en infinidad de campos; por ejemplo, la termodinámica desarrollada en el siglo XIX, es la encargada de establecer y cuantificar la base de las ingenierías mecánicas y químicas.
Los conceptos termodinámicos como el volumen, la temperatura y la presión de un gas son necesarios para entender el funcionamiento de los sistemas químicos e industriales que rigen en la actualidad. Durante el siglo XIX los físicos solían ser a la vez filósofos, matemáticos, biólogos, químicos o ingenieros; actualmente la física se ha desarrollado a tan grandes escalas que los físicos modernos limitan su atención sólo a dos ramas de su ciencia. Los descubrimientos más preponderantes de esta época en electricidad y magnetismo forman hoy parte del campo de ingenieros de comunicaciones y electrónicos ya que los mismos poseen propiedades de este ámbito.
Hacia 1880 la física presentaba un panorama distinto ya que la mayoría de los fenómenos podían explicarse mediante la mecánica de Newton, la teoría electromagnética de Maxwell y la termodinámica de Boltzmann, sólo quedaba resolver unos pocos inconvenientes. La explicación de los espectros de emisión y absorción de los gases y sólidos y la determinación de las propiedades del éter eran fenómenos revolucionarios que estallaron en 1895 cuando Wilhelm Roentgen descubrió los rayos X; luego, Joseph Thompson descubrió el electrón y en 19896 Antoine Becquerel la radiactividad. Estos descubrimientos completaron lo que se creía "completo" y muchos de ellos desafiaban todas las teorías disponibles.
Algunos de los descubrimientos más importantes de la física en el periodo moderno:
1895: Se descubren los rayos X y se estudian sus propiedadesEl físico alemán Wilhelm Röntgen logra la primera radiografía experimentando con un tubo de rayos catódicos que había forrado en un grueso papel negro. Se da cuenta que el tubo además emitía unos misteriosos rayos a los que llamó X, estos tenían la propiedad de penetrar los cuerpos opacos. Por este aporte fue galardonado con el primer Premio Nobel de Física en 1901
1905: La Teoría de la Relatividad redefine el tiempo y el espacioAlbert Einstein publica su Teoría de la Relatividad Especial, la cual postula que nada puede moverse más rápido que la luz, que el tiempo y el espacio no son absolutos, y que la materia y la energía son equivalentes. (E=mc2)
1913: Se expone el modelo de átomo de Niels Bohr, físico danés, presenta su modelo atómico en que los electrones giran a grandes velocidades en órbitas circulares alrededor del núcleo ocupando la órbita de menor energía posible, esto es, la órbita más cercana al núcleo. El electrón puede "subir" o "caer" de nivel de energía, para lo cual necesita "absorber" o "emitir" energía, por ejemplo en forma de radiación o de fotones.
1930: Se inventa el plásticoEl químico alemán Hermann Staudinger muestra cómo las pequeñas moléculas forman cadenas de polímeros, estructura fundamental del plástico, y sugiere cómo hacer polímeros. En la Compañía E.I. du Pont de Nemours, el químico norteamericano Wallace Hume Carohers desarrolla el nylon y la goma sintética.
1932: Se descubre el neutrónEl físico británico James Chadwick bombardea berilio con núcleos de helio, y encuentra el neutrón, el segundo constituyente del núcleo atómico junto con el protón. Esta partícula eléctricamente neutra puede ser usada para bombardear y probar el núcleo.
1969: El ser humano llega a la LunaEn una proeza que dio inicio a la exploración humana directa de los cuerpos astronómicos, el astronauta estadounidense Neil Armstrong se convierte en el primer ser humano que camina en la Luna.